Tebis Version 4.0 Release 8
More safety, more automation, greater user convenience
More safety, more automation, greater user convenience

Version 4.0 Release 8 offers many new and improved functions such as indexed collision avoidance, the extended machine unit library, the simplified feature scanner, improved 5-axis simultaneous avoidance milling, convenient machine simulation and much more. There have also been updates in terms of CAD: Reverse engineering is now easier and faster with more automation.
CAD – Reverse engineering

More automation and clear presentation of the results
As the basis for reverse engineering you can create a wire-frame model from scanned data that is used in turn to create a surface model. This surface model can now be generated automatically and conveniently with the new Tebis Version 4.0 Release 8. You can use the new "BRep/Top/Approx" function if the surface model is to reference the original scanned data. If you only want to reference the wire-frame model, you can use the "BRep/Top/Fill" function.

Just select the wire-frame model and the surfaces are automatically calculated in the background.

If you select the new "Display/Compact" option, in addition all surfaces are displayed in a single color as a preview. This enables evaluation of the surface quality at a glance. You can specify the desired color in advance.

Retain design curves
If designed design curves are not to be changed in reverse engineering, you can fix these curves with the "Configure edges" function.

CAM – Automation

Better overview and clear operating structures in the revised feature scanner
Features that are already connected to the part – because they were imported via interfaces or because the part has already been scanned – are accounted for during scanning and do not have to be inserted again.

The new "Auto" function is also very convenient. The part is completely scanned with no interruption and clearly evident features are automatically inserted. If several different features are possible for a machining operation, you can select the appropriate areas after scanning and choose the desired feature.

CAM – Data preparation

Save time with precise profile contours
Profile contours for turning can now be derived precisely from the 3D part contour with the revised "Profile" function. Moreover, circles are mapped one-to-one. The subsequent blanks are more precise without the need for design preparation of the profile contour.
Shorter run times and fewer machine movements in 5-axis simultaneous avoidance milling

The function for 5-axis simultaneous avoidance milling has been improved comprehensively. Specific milling areas are automatically deactivated if they cannot be machined collision-free in an NCJob calculated with the "3to5-axis" collision avoidance strategy.

To left in image: All areas are calculated and checked for collisions. To right in image: Areas that can be manufactured collision-free with 3-axis or 5-axis simultaneous avoidance milling are machined. Areas that cannot be manufactured collision-free can be processed in the continuation job.

The pivoting behavior of the tool has also been optimized. The tool does not perform 5-axis simultaneous avoidance unless a collision would actually occur in 3-axis machining.

Greater flexibility for machine operators with variable NC output

A real highlight for the machine operator is the extended NC output. If the "Planes uniform" selection box is activated in the "NC2AX/Mill/MPlan" function, the machine operator can manually edit the depth of cut, total depth or the reference point after NC output directly on the control, thereby matching them to the depth of cut and position of the tool. Of course, this function is only available to a limited extent for reasons of collision prevention.

The ability to edit the NC program is especially useful in part manufacturing when the stock allowance and material properties of the blanks are not precisely known.

High-performance roughing with optimized connecting paths

In the "NC3ax/RPlan" function, you can now select the desired feed rate for helical stepover between the machining planes. This "re-roughing mode" accelerates roughing and ensures longer tool life. If desired, it can be specified which connection length is not to be exceeded for this special roughing operation.
CAM – Drilling

Extended unit library enables complete automation of deep-hole drilling
The new release provides variable drill bushes and drill bush holders as machine components in the unit library.
All components of state-of-the-art deep drilling machines can now be stored as digital twins in the system. This enables the highly automated generation of NC programs for 5-sided deep-hole drilling with the "MDep2" NCJob function with no restrictions.

Integrated simulation ensures collision detection before NC output. Travel behavior and switching of drill bushes and drill bush holders are simulated precisely in the virtual CAM environment.

CAM – Machine technology

Quickly and easily create tool assemblies
You can now easily determine the insert length for tool assemblies at the click of a button. A line at the diameter of the cutter is drawn parallel to the tool axis. The intersection point between this line and the shank contour yields the insert length.

Convenient and clearly structured machine simulation
Do you want to simulate your entire machining operation without the simulation stopping at every possible conflict? Then simply accept these conflicts in advance in the conflict list for the completely tested NC program. Accepted conflicts are no longer accounted for during the simulation.

Of course you can also easily go back to the conflict list during the simulation and accept conflicts that are found. This means you always have an overview.

CAM – Job planning

More reliability in multiple setups
For parts in multiple setups, the blanks of adjacent parts are now also fully accounted for when collision checking with the CNC simulator.

User-friendly comment function
Images from comments in the Job Manager can now be conveniently resorted by drag and drop. The sequence is transferred to the NC documentation.

CAM – Laser cutting and trimming

Run-time optimized NC programs for reliefs
You can now specify radii and angles for reliefs directly in the stanchion design. This ensures that sharp corners on relieved stanchions, base plates and ribs are avoided. This has two significant advantages: On the one hand, the entire device can be manufactured more quickly due to the more homogeneous travel. And on the other hand, the machine operator can remove cut pieces with no risk of injury.

The parameters can be individually optimized depending on the requirements. For example, the best results can be achieved using small radii and flat angles for laser cutting. In contrast, the cutter requires sufficient space for trimming plastics. The better choice may be large radii and a steeper angle.

CAM – Drilling

Extended unit library enables complete automation of deep-hole drilling
The new release provides variable drill bushes and drill bush holders as machine components in the unit library.
All components of state-of-the-art deep drilling machines can now be stored as digital twins in the system. This enables the highly automated generation of NC programs for 5-sided deep-hole drilling with the "MDep2" NCJob function with no restrictions.

Integrated simulation ensures collision detection before NC output. Travel behavior and switching of drill bushes and drill bush holders are simulated precisely in the virtual CAM environment.

CAM – Machine technology

Quickly and easily create tool assemblies
You can now easily determine the insert length for tool assemblies at the click of a button. A line at the diameter of the cutter is drawn parallel to the tool axis. The intersection point between this line and the shank contour yields the insert length.

Convenient and clearly structured machine simulation
Do you want to simulate your entire machining operation without the simulation stopping at every possible conflict? Then simply accept these conflicts in advance in the conflict list for the completely tested NC program. Accepted conflicts are no longer accounted for during the simulation.

Of course you can also easily go back to the conflict list during the simulation and accept conflicts that are found. This means you always have an overview.

CAM – Job planning

More reliability in multiple setups
For parts in multiple setups, the blanks of adjacent parts are now also fully accounted for when collision checking with the CNC simulator.

User-friendly comment function
Images from comments in the Job Manager can now be conveniently resorted by drag and drop. The sequence is transferred to the NC documentation.

CAM – Laser cutting and trimming

Run-time optimized NC programs for reliefs
You can now specify radii and angles for reliefs directly in the stanchion design. This ensures that sharp corners on relieved stanchions, base plates and ribs are avoided. This has two significant advantages: On the one hand, the entire device can be manufactured more quickly due to the more homogeneous travel. And on the other hand, the machine operator can remove cut pieces with no risk of injury.

The parameters can be individually optimized depending on the requirements. For example, the best results can be achieved using small radii and flat angles for laser cutting. In contrast, the cutter requires sufficient space for trimming plastics. The better choice may be large radii and a steeper angle.
<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tebis America Inc.</td>
<td>Troy, MI 48083</td>
<td>USA</td>
</tr>
<tr>
<td>Tebis France SARL</td>
<td>69003 Lyon</td>
<td>France</td>
</tr>
<tr>
<td>Tebis Italia S.r.l.</td>
<td>10098 Cascine Via Rivoli 10</td>
<td>Italy</td>
</tr>
<tr>
<td>Tebis Scandinavia AB</td>
<td>42246 Hisings Backa</td>
<td>Sweden</td>
</tr>
<tr>
<td>Tebis China Co. Ltd.</td>
<td>201203 Shanghai</td>
<td>People’s Republic of China</td>
</tr>
<tr>
<td>Tebis Iberia, S.L.</td>
<td>28108 Alcobendas (Madrid)</td>
<td>Spain</td>
</tr>
<tr>
<td>Tebis Portugal Unipessoal, Lda.</td>
<td>2430-527 Marinha Grande</td>
<td>Portugal</td>
</tr>
<tr>
<td>Tebis (UK) Ltd.</td>
<td>Coventry CV1 2TT</td>
<td>United Kingdom</td>
</tr>
</tbody>
</table>

Sichuan Province
People’s Republic of China
610000 Chengdu City
info-china@tebis.com

Distributors:

<table>
<thead>
<tr>
<th>Country</th>
<th>Company</th>
<th>Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAZIL</td>
<td>Alltech</td>
<td>89219-600 Joinville (SC)</td>
<td></td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>MCAE Systems, s.r.o.</td>
<td>664 34 Kufim</td>
<td></td>
</tr>
<tr>
<td>INDIA</td>
<td>NIMBUS TECHNOLOGIES</td>
<td>411052 Pune</td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td>Marubeni Information Systems Co., Ltd.</td>
<td>150-0002 Tokyo - Shibuya-Ku</td>
<td></td>
</tr>
<tr>
<td>REPUBLIC OF KOREA</td>
<td>CMC Engineering Export GmbH Korea Branch</td>
<td>153-803 Seoul</td>
<td></td>
</tr>
<tr>
<td>MEXICO</td>
<td>Software y Aplicaciones CNC, S.A. de C.V.</td>
<td>45080 Zapopan</td>
<td></td>
</tr>
<tr>
<td>ROMANIA</td>
<td>MBVITIM Consulting SRL</td>
<td>300092 Timişoara</td>
<td></td>
</tr>
<tr>
<td>RUSSIAN FEDERATION</td>
<td>LLC «Technological Bureau of Innovation Systems»</td>
<td>127247 Moscow</td>
<td></td>
</tr>
<tr>
<td>SLOVAKIA</td>
<td>MCAE Systems, s.r.o., organizačná zložka</td>
<td>01841 Dubenica nad Váhom</td>
<td></td>
</tr>
<tr>
<td>THAILAND</td>
<td>Wise Engineering Service Co., Ltd.</td>
<td>10260 Khet Bangna, Bangkok</td>
<td></td>
</tr>
<tr>
<td>TURKEY</td>
<td>Redoks Mühendislik Bilgisayar Tic. Ltd.</td>
<td>Şti. 16250 Bursa</td>
<td></td>
</tr>
</tbody>
</table>